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1.  Introduction. 

This report is the first of a series and presents the basic concepts 

of manpower flow models. The notation, conventions, and definitions that 

will be used in this and subsequent reports is introduced. The three main 

concepts described in this report are (i) conservation of flow, (ii) equi- 

librium, and (iii) the relation between waiting times and the flow process. 

The usefulness of these ideas is not limited to manpower planning and we 

hope the reader will fir-d these basic concepts useful in wide variety 

of other areas. 

The report concludes with a brief discussion of the possible uses 

of manpower flow models and of the need for more structured models to 

provide useful answers to planning questions.  Subsequent reports present 

models with more structure and examples of their application. 

2. Manpower Classification. 

Consider a manpower system which consists of N different classes 

of manpower n = 1,2,...,N. To prevent undue repetitions the words, type 

kind, and category are used as synonyms for class.  In some applications 

we shall employ more specific and descriptive names such as rank, grade, 

state, or status. 

The particular method of manpower classification is not important 

as long as each individual in the organization can be identified as a 

member of one and only class. Thus any classification scheme partitions 

the members of the organization into disjoint groups whose union is the 

entire organization. 

The manpower classification n = 0, is special. People in class 

zero are not part of the organization, and we typically consider that an 

KvWWd^jW^ii^^^ft.i;^ 
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infinite pool of manpower exists outside the organization.  It is conven- 

ient to explicitly consider class 0,  since most manpower organizations 

have significant interactions with the external manpower pool. 

There are a large number of ways to partition the members of any 

organization.  The exact partitioning rule should be related to the 

eventual purpose of the manpower flow model.  Several partitioning rules 

are listed to stimulate the reader's imagination. 

Partitioning Rules: 

(i)  By common institutional rule:  e.g. job, rank, pay level, etc. 

(ii)  By common personal characteristic, e.g. age, skill, test performance, 
etc. 

(iii)  By common past and future career patterns, e.g. length of service, 
final status, initial status, total time in organization, or 
entire career pattern. 

Under (iii) one can have interesting classification rules which are 

not immediately obvious.  For example, in planning models where alternative 

policies are to be tried the input of manpower to the organization can be 

classified by the career path it takes before it leaves.  It is not known 

a priori which path a given Individual will take, but such models still 

have important uses in manpower planning as we shall see in later reports. 

Example 1:  Students in a two year college can be classified by ranks F 

and S for freshmen and sophomores. They can also be partitioned by 

career pattern as follows: 

Type 

1 

2 

3 

4 

Career Pattern 

FS 

FFS 

FSS 

F 

$aAiik^Xi-"*Jii^--..:r:-^^^^^ 
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Type 1 students complete in two years, type 2 and 3 complete in three 

years, and type 4 does not complete. 

Problem 1;  Suppose for the past ten years three students of each type were 

admitted to the college.  How many freshmen and sophomores do we have now? 

From now on, we follow the new policy shown below: 

Type 

1 

2 

3 

4 

Admissions/year 

Old Policy New Policy 

3 4 

0 

4 

8 

The new policy is to dismiss those who need to repeat the freshman 

year. This makes more admissions possible.  We have assumed that the 

four new admissions include one in type 1, one in type 3, and two in type 

4. Trace the evolution of the system under the new policy for four years., 

D 

An essential part of modeling manpower systems is the interaction 

between different classes through time.  The next section introduces the 

notion of manpower flow between classifications. 

3.  Stocks, Flows, and the Timing Convention. 

This section presents definicions of manpower stocks and flows 

along with a timing convention.  The definitions and conventions are to 

some degree arbitrary; however, a great deal of unnecessary confusion can 

be avoided if a convention is agreed upon and used throughout. 

The manpower system evolves over time. New individuals join the 

system and individuals in the system remain in one classification for a 

iiiiäiiiiiiiitiiMiaiiiiiäi ■ixt'±y'*:*~^r,:■'■■:* ^i..:'>v^h« ^-   -'._■% . ^■■■■^iL^-iMwi 
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time, then either move to another classification or leave the system. At 

cervain points in time t = 0,1,2,... we imagine that all motion in the 

system stops and we count the number of individuals in each classification. 

These instants at which we observe and count the people in each classification 

are referred to in various ways, as time t,  inventory point t, observation 

time t, and accounting point t. 

Definition 

Let s.(t) be the number of people in classification i at 

observation time t;  s.(t)  is the stock of class i manpower 

at accounting point  t.  The N-vector s(t) = [ (s-. (t) ,s (t), .. ., 

sM(t))j  gives the stock of the manpower system at time  t. 

Notice that class zero manpower has been omitted from our definition. We 

shall find that the role of manpower outside the organization will differ 

greatly from one application to the next. 

The interval of time between observation points t - 1 and t 

is defined to be period t.  To be more precise, period t  is the time 

interval (t-l,t];  thus time t is the last instant in period  t, and 

time  t - 1 marks the beginning of period  t,  although it is not included 

in the period. 

Definition: 

Let f..(t)  be the number of individuals that start piriod t 

in classification i and finish period  t in classification j. 

The variable f..(t)  is called the flow from i to j  in 
ij  

period t. 

The observation points t are not necessarily evenly spaced in time. The 
index t does count the number of observation points since time zero.  We 
generally assume, however, that the observation points are evenly spaced 
in time. 

^■-v ■ -:^ ^z ■ :      ■..^:u±.^.  r,•--:-.: ^ 
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The -.iming conventions ar^i depicted in Figure 1.1, below.  The stock 

si(t-l)  is divided into several flews.  One of the flows moves to classi- 

fication j  during the period.  The stock s.(t)  is the sum of all indi- 

viduals that flow into class  j  during the period.  Note that  f..(t) 

is simply the number of individuals who start and end period  t  in class j. 

Clearly the flows  f..(t) must be non-negative. 

The flow f.n(t)  and  fn.(t)  are vespectively the number of class i 

individuals who leave the system in period  t,  and the number of people 

who join the system in period  t  and are first counted in class  i. 

The  (N+l)-component vectors  f^Ct)* [f 10(t), f  (t).,. .. »f  (t) ]  and 

f,^(t) = [fy (t) ,f  (t),. .. , f  (t)]  are respectively the flows from c] ass  i 

and to class j  in period t.  Finally, let f(t)  be the  (N+l)2-vector 

f(t) = [f0,(t),f1,(t),...,fNÄ(t)]. 

Example 2:  Consider a two class organization over ten days and the histories 

of four individuals  A,  B,  C,  D.  At  t = 0  the system is taken to be empty. 

Individual 

Observation Time 

3   4   5   6 10 

A 0 1 
■F— ' 

1 2 1 2 2 1 0 0 

B 0 0 2 2 2 1 2 1 1 2 

C 2 2 1 1 1 1 2 1 1 1 

D 1 1 - 2 2 2 2 1 2 2 

The table shows the classification of each individual at the observation 

times. To be precise, we assume flow between classifications takes place 

from 8:00 am - 5:00 pm each day.  Class zero indicates the individual 

is outside the organization.  The organization has two internal states. 
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With this history the stocks and flows are; 

Observation Time 

Stock 

0 1 2 3 4 5 6 7 8 9 10 

s^t) 0 1 2 2 1 2 2 0 4 2 1 

32(t) 0 1 1 2 3 2 2 4 0 1 

Period 

Flow 

f01(t) 

f02(c) 

f  Ct) 
icr ; 

fu(t) 

f12(t) 

f20(t) 

f21(t) 

f22(t) 

1  1 2 3 4 5 6 7 8 9 10 

1 1 

1 1 

1 

1 \ 1 1 1 2 1 

1 1 1 2 1 1 

1 1 1 4 

1 2 2 1 2 1 

Blank entries represent zero flows. 

Example 3:  Given the same data as example 2, suppose we inventory every 

other day at 6:00 pm.  The following stocks and flows are counted. 

Observation Time 

Stock 
s^t) 

s9(t) 

0 1 2 3 4 5 

0 2 1 2 4 1 

0 1 3 2 0 2 

^«äiaiöaä^^ 
K»i^U«Äj,.^-t»;'-l.Vi>ti'j-.,,-,i.r;v^f.-»J.,..,..,v:.-. 



Period 

.,,v-ri,:vy-.iV«'--'-'-- 

f02(t) 

fio(t) 

f1]L(t) 

f12(t) 

f20(t) 

f21(t) 

f22(t) 

1 

12   1 

2 2 

112 

2 

n 

Again, blank entries represent zero flows. 

Problem 2:  Find another history of four individuals that leads to the 

same stocks ar>d flows calculated in example 3.  Do not use the same histories 

as in example 2. 

4.  Conservation of Flow 

A simple accounting relation must hold between the stocks ?nd flows 

introduced above.  Every individual classified in the system (classes 1 

through N) at observation time  t,  must be in some class at observation 

times  t - 1 and  t + 1.  Thus it is possible to evaluate  s.(t),  the 

number of people in class i at time t,  either by conditioning on their 

prior class or their subsequent class.  The equations are 

N N 
y f..(t) = S.<K) = y f..(t+i) , 

i=0 ^ 1 j=0 ^ 
(i) 

f. .(t) > 0. 

Equation   (1)   is  the fundamental conservation of   flow relation. 
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In many applications certain flows are equal to zero. When 

this is the case it is more convenient to use a matrix form of the flow 

conservat'.on law.  We illustrate this point by an example. 

Example 4: The faculty of a university is  partitioned into three classes: 

1-non-tenured, 2-tenured, and 3-retired. Due to institutional restrictions, 

there is no flow from the tenured class to the non-tenured class; thus 

fv-i (t) = 0.  In addition, there is no low 1 om the retired class to 

either tenure or non-tenure; thus f„ (t) = f-_(t) = 0 for all t.  Simi- 

larly,  f-,, (t)  is zero, the flow f „(t)  is likely to be zero, and there 

seems to be no reason to consider the flow f  (t).  With these points 

in mind we form the 10 component flow vector 

f(t) = [r01(t),f02(t),f10(t),f11(t),f12(t),f20(t),f22(t),f23(t),f30(t).f33(t): 

The matrices B and A below are used to partition and sum the 

flows in order to enumerate the members of the class by their class at 

the observation point before (B) and after (A) time t. 

1001000000 

0100101000 

0000000101 

0 0 11100000 

0000011100 

0000000011 

The conservation of flow relations ar.-".; 

(2) Bf(t) = s(t) = Af(t+1), 

f(t) > 0 

miWigiiiiiiifrtif tti&^iä^föJ^*^t:^;^ 
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In the general case, let  k = 1,2 ,...,!<.  index the possible flows, 

For each  k there is an i(k)  and  j(k)  which indicates that Clow k 

moves from class  i to class  j.  Then b and A are  N x K matrices 

with 

B 
ik 

and 

ik = 1 

1  if j(k) = 1 

0  otherwise, 

1  if i(k) = i 

0  otherwise. 

Uith this definition equatioi. (2) describes the conservation of flow for 

any system. 

Example 5:  (Continuation of example M.)  The functions  i(k)  and  j(k) 

are tabulated below 

j(k) 

k 1 2 3 4 5 6 7 8 9 10 

i(k) 0 0 1 1 1 2 2 2 3 3 

0120230   3 

The general flow of manpower is described by a systej.i of equations 

(3) 

Af(l) 

Bf(l) + Is(l) 

- Is(l) + Af(2) 

- Bf(2) + Is(2) 

- Is(2) + Af(3) 

s(0) 

0 

0 

0 

0 

where I is an N x N idenity matrix, and s(t) and r(t.) are non-negativt- vectors 

These equations are network flow conservation relations.  The columns 

associated with  f. (t)  or  s.(t) contain exactly one positive 

^^^«"(^»^aWtaiii^iM^ .^-^.te^^a^ta^toi^i  "■ _ijiaafiiÄ*.'*i. ^'ii'^i^U^i ;:■'._>■'.-;■.■ ..-,■.... ■..• ;-> .■.n,T,'ü---*-!.,<.:;-,-,i-.(,'.'.,,.  .«.-.i^ ■/«J,-.;■■:.,.'-.".^t^, 'j:.:'.,■■:■'J^L 
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element  (+1)  and one negative element  (-1).  If K flow combinations 

are possible, then the system of equations (3), over T  time periods has 

T x (K+N) variables and 2 x T x N constraints. The flow network for 

the faculty system presented in example four is depicted below in Figure 

1.2.  Notice that; time elapses during the flow phase, but that zero time 

elapses during the counting phase. 

Problem 3. Construct the A and ß matrices for example 2, and show 

that the flows calculated in example 2 satisfy the conservation relations. 

Problem 4.  In a hierarchy the manpower classifications are ranked so 

that position 1 is dominated by j  if j > i.  If WP. assume f  (t) = 0 

if j < i and j / 0, then what will be the dimension of A and B for 

an N classification hierarchy? 

The hierarchy is strict if f..(t)  differs from zero only when 

j = 1, i + 1, or 0.  What are the dimensions of A and B for an N 

classification strict hierarchy? 
D 

5.  Equilibrium 

The notion of equilibrium is important in the study of physical 

social, and economic processes and it will play a central role in our study 

of manpower flow systems.  We do not believe that many manpower systems 

are in equilibrium.  However, the simplifications that result in analyzing 

an equilibrium system make for a useful approximation to the actual system 

and the examination of the equilibrium consequences of any fixed (stationary) 

policy is es.se.itial in uncovering the direction of change implied by the 

policy and for discovering the policy's long run implications. 
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Equilibrium indicates some degree of regularity over time.  It 

will be useful to define some terms that describe systems over time.  First, 

a transitory system is one which moves from one trivial equilibriurr. fo 

another.  An example is a one time operation like an election campaign 

(which starts with no one in it and ends after the election with no one 

in it).  A transient system is one on its way to equilibrium.  The policy 

governing the system is an equilibrium policy, however.  The initial 

conditions are such that equilibrium is not immediately obtained.  We shall 

consider several types of equilibrium; constant size, expanding  or con- 

tracting, geometric or arithmetic growth.  Finally, we shall use the term 

steady-state interchangeably with equilibrium. 

This section will characterize the equilibria that describe a con- 

stant size system.  Transitions between equilibria and expanding (or 

contracting) systems will be examined in a later section. 

The system (3) is defined to be in equilibrium if  f(t) = f  for 

all  t.  It follows that s(t) = s for all t, and that 

(4) s = Bf = Af f :> 0. 

The equations that characterize the possible equilibria can also be inter- 

preted as network flow equations, 

(5) 

A -I 

-B   I 

p   - —    -^ 

f = 0 

s = 0 
. L.         - 

f  > 0 . 

In general,   (5)   will  contain     2N     independent  equations  and    N + K    nonnega- 

tive variables     (f     and     s) . 

v^üta&iäh**^^ 
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Example 6:  The faculty system presented in example 4, has the following 

equilibrium flow equations.  There are 6 equations and 13 unknown. 

f01 f02  f10 fll f12 f20 f22 f23 f30 f33 Sl S2 S3 

-1 

-1 -1 

-1 -1 -1 

-1 -1 

0 

0 

0 

0 

0 

0 

The network corresponding to an equilibrium flow in this system is presented 

below in figure 3. 

Example 7:  The flows and stocks given below satisfy the conservation 

equations for the faculty system 

'01 

17 

'02 10 "11 

80 

12 

11 

f 
20 

10 

c )9 

320 

"23 

5 

30 33 

95 97 335 100 

Problem 5:  Write out the equilibrium flow equations for the network of 

problem 3.  Fix s  = 10,  s = 5,  and  f  = f  = 1,  f-, = f ^ = 0. 

Show this implies  f  = 2, Now solve for t-iT» ^^^,    an'*    ^?i i-n 

terms of  f99-  Calculate the flows for  f  = 0,1,2,3. 
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6. Average Lifetime in a Class. 

We define the lifetime (or term) of an individual in a manpower 

class as the number of consecutive time points  t = 1,2,3,...  in which 

the individual is counted as a member of tnat class.  In this section we 

derive a simple expression for the average lifetime in any class when the 

system is in equilibrium. 

Example 8.  Suppose the time point t marks the start of a month. An 

individual who joins a manpower class on March 13th and leaves September 

20th of the same year has a lifetime of six months in the manpower class- 

ification, since the individual was counted in that class at the beginning 

of April, May,•.. , September. 
G 

It follows that the lifetime of any individual in a class is a 

positive integer.  Let I,     be the average lifetime in class i, where 

the average is over the group of individuals that arrive in class i in 

any period. We shall show that 

(6) I.  = s./(s - f..) = 1/1 - (f../s.) 
X     1    i     11 11   1 

In each period there are s. -• f.. new arrivals in class i. Let r i   ii 

k = l,2,...,s.-f..  index these arrivals and let  £. .  be the lifetime 
i ii i,k 

in class i of arrival k. The average lifetime is thus 

s.-f.. 

i ii  k=l 

Now for m = 1,2,...  let n  be the number of arrivals with lifetime equal 
• m 

to m. it follows that 

;.   - f , .   = y    n    , i ii       S     m 
m=l 

^^^^-■-■immmmmmim ilifarifni'friitil'^''«^'-^'"'^"''*^''-'-'-'-- ■^.'Wi:-i.-m i -roiäiiid^M 
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and 

(7) i       s.-f. .      Ln       m i    ii m=l 

:!' 

Now we exploit  the  assumption of  equilibrium.     If   the system is  in equilib- 

rium then    5,.   .      is  the same in each period.     The  individuals in class     i 
1 ,K. 

at any inventory time      t    can be  identified by their eventual lifetime  in 

class    i.     Let    h       be  the number with  lifetime equal  to    m.     It  follows m 

that    h1   = ni J   i.e.,   all those entering period    t    with lifetime equal  to 

1.     Moreover     h„  = n^ + n„  = 2n„;     i.e.,   all  individuals with    £.,   =  2     that 2 2 2 2 ik 

joined in periods     t  - 1    and    t.     Earlier arrivals with    2...   = 2    have 

already departed.     In general then we see  that    h    = mn  .    However,     h       is r m m m 

also a partition of     s.     according to duration,   thus 

(8) ^  =    I    h    =     I i s     m L ran 
m=l m=l 

m 

When   (8)   is  substituted  into   (7)   equation   (6)   results. 

Problem 6;     Show that  no equilibrium exists  if     I is not finite. 
ik Q 

Notice from the argument above chat there is another tempting way to talk 

about average lifetime.  Suppose at time  t, we determine the durations 

of the individuals in class i. There will be s.  individuals, and there 

will be h = mn  with duration equal to m.  The average duration,  X. , 
mm 0 i 

over this group is clearly 

(9) I mh  = 
s.   ^  m 
i m=l 

r.00    2 
)  ..m n 
^m=l  m 

>  ..mn i'm=l m 

^^■»^^^s&at^^tfift^&^ada.^-k-. .aia.^a^fe^^^^ 
'■^.■■'■-■■-■■■^r^:i,-:i^:-:L' ■■-.-'■:- 
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Problem 7: Let M be the largest m such that n > 0.  If M > 1, show 
  m 

that X.   >  £.. When M = 1,  show that A. = 2... 
ii ii n 
We see that except in the trivial case  (M = 1),  the second 

method strictly overestimates average lifetime.  This phenomena is known 

as the Inspection paradox.  In the first averaging method we sample flow 

into the classification; in the second method we sample the stock in the 

classification. The stock necessarily contains a larger proportion of 

the individuals with long lifetime in the class.  This phenomenon is also 

known as "length-biased sampling.1' 

Example 9:  Consider the equilibrium flow for our three class faculty 

system that was calculated in Example 7. The average lifetimes are 

£„ = 

5.7 , 

22.3 , 

20.0 . 

Example 10: Each year 1000 new students arrive at a university. The 

breakdown of the 1000 entrants by duration is: 

m 

1 200 

2 100 

3 200 

4 500 

We see  that    2,..   =3.     This  implies  that    f-ii/Si   =  2/3     or    f 

The equilibrium flow relations are 

ii = 2/3 V 

aiittotfateiiMafiMasmi-YWrtifeai^ m 
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/ ij—^^ s 

I fe 

Sl = f10 + fll = fli + f01 

f01 = looo = f10 =* s1 = looo + f11 

=» f  = 2000 and  s = 3000. 

Moreover, the. breaKdown of the stock of students by lifetime is 

m h m 

1 200 

2 200 

3 600 

4 2000 

The average lifetime among students is (200+400+1800+800G) = 3.46. 
3000 

Note also that 50% of all entrants have lifetime of 4 years while 67% of all 

students have a lifetime of 4 years. 

Problem 8:  Continuation of problem 5.  Express the lifetime as a function 

of f22.  Calculate for f22 = 0,1,2,3. 

Problem 9: You ask a consultant for a simple way to measure how long on 

the average a person stays with your organization.  He suggests you "randomly 

select" 10% of your current personnel, determine from their records when they 

entered your organization, and follow their records until they leave. Averaging 

these lifetimes will give you a good estimate of the average lifetime of your 

personnel.  Is his advice good?  If not, what do you think is wrong and what 

would you do to improve it? 

i^iim^&^jöfö^&ääii^ifl^iüääj! HMliiMiaiaBaaaMifflitetaBi^^ nn ,    ,1,  -.„■...., .^-„u 
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7, Arithmetic Expansion. 

It is possible for the system to expand in an arithmetic manner. 

Let  f(t)  be determined by the difference equation 

(10) f(t+l) = f(t) + g = f(l) + tg, 

where  f ^jj  anci g  are given vectors.  It follows from the general flow 

equations (3), that 

Af(l) = s(0)  and Bf(l) = s(l). 

In general we have for  t ^ 1,  that 

s(t) = Af(t+1) = Af(l) + Ag + (t-l)Ag = s(0) + Ag + (t-l)Ag, 

s(t) = Bf(t) = Bf(l) + (t-l)Ag = s(l) + (t-l)Bg. 

It follows, for  t = 1,  that Ag = s(l) - s(0).  In addition, we must 

have Ag = Bg.  Thus  f(l)  and  g must satisfy 

(11) Bg = Ag = (B-A)f(1) , 

g £ 0,   f(l) :> 0. 

Example 11:  A solution of (11) for the three class faculty example is 

given below. 

01  02 10 11 12 20 22 23  30  33 

f(l) 

g 

10  4  2  19  4  1 26  4  1  8 

2111111112 

titetT^tilftfa&ayifftti^ 
'■'■^.t ; V.'f-I-I^I 

;l.i ^.^^^^-1^^^.^;^^. ,  .^i^^^'.J' ■...:: ■iJ;<.-.^iv 
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Problem 10:  Calculate f(t)  and s(t)  for five periods given the data 

in example 11. 

Problem 11:  If some element of g is negative,  derive an expression for 

the first time such that an element of f(t)  or s(t) becomes negative. 

Problem 12: Giv^n s(0),  and the knowledge that (2) has a solution with 

g ^ 0, is there a maximum growth solution of (2)? 

8.  Geometric Expansion and Contraction. 

In contrast to the static equilibrium described by equation (4) 

or the arithmetic growth determined by equations (10) and (11) we can 

consider a geometric changf. in the system where, for some scalar 0, f(t) = 9 f. 

The system is expanding if  9 > 1,  contracting if  9 < 1,  and of constant 

size if 9=1.  The basic flow equations (2) become 

s(t) = 9t:Bf = et+1Af = Qts 

This implies f  and  s must satisfy 

öA  -: 

-B 

f > 0 . 

Example 12:     For  the  three class faculty model  of  example 4  the equilibrium 

equations are 

fa^aäSlMfiaiÄiaiM^ ^^„.M^J,;;,.»^,.,,....^. .,...;, t^i^A^i^lk^iiate^&^ii^./j^- 
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f01 f02 f10 fll f12 f20 £22 f23 f30 f33 Sl S2 S3 

6   8   G 

(13)  -1 -1 

-1 

6   0 

-1 

-1 

-1 = 

1 = 

0 

0 

Ü 

0 

0 

0. 

Note that 0=1,  reduces to the constant size case and that for 

0^1,  the network, flow interpretation of the equilibrium equations (l^) 

is lost.  A feasible growth equilibrium for 6 = 1.05  is given by 

ffffff^fffsss 
01      02      10       11       12       20     '22       23      30       33     "1 2 3 

54  33  20 156  24  30 258  12   7  93  210  315 105 

Problem 13 :  Will (12) have a nontrivial  (f,s) ^ 0,  solution for any 

□ 

0 ■-   0? 

Problem 14:  Find a solution for (13) when ü = .95  and  s  and  s. 

are in the same proportion  (3/2)  as in example 12. 

The formula (6) for average lifetime in each class does not 

apply.  However, it is possible to obtain an approximate expression for 

average duration. 

The inflow into a class in period t is Ö [s. - f..].  Assume 

that in period  t  there are  0 n  entrants with a lifetime of m periods. m 

As before  the average duration  is     )     ,mn /(s.-f..).     However,   the  sum Lm=l m  i ii 
rM , 
)  ,mr   is not equal to  s.  when  0^1.  Using the same logic as before 
^111=1 mi 

we can determine that 

fe^^^^^^^j^i^^^^toia^,,.. ^^.^ 
i. J^ .uj.^ü,i'/,it ■:^Vä 
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(t)   =  Qt     I     n 
M (TÜ-1 .-N 

m==l 
1     9 J|   = 0     s 

j=0        > 

The  linear Taylor  expansion  for     s.     around  the value     0=1     is given 

or 

rm-1 
s.  =    I    n       Jo' 

m=l        ^j=0 

M 

M 
I    mn 

m=l 

M 
(0-1)     v     .  2 

m 2 
^     (m -m)^^ , 

m=l 
m 

-1^ 
M 

I mn (zrr]   s-  + sfr77j   1    m n 

m=l m=l 

From this we see that 

I r 
^^~r--^^\-1* 

1 ii m=l 

rH rM   2 
If we use (9), and substitute  A.)  ..mn  for  )  ^m n ,  we obtain 

i'jm=l    ra Lni=i       m 

K*{ 
s. 

] b-lH     "hen     0  = 1 i+e-O-DA.^s.-f,, i      i    ix 

This  equation gives  a useful  approximation to  th.i  lifetime     £.,     which  is 

simple  to  calculate and   is   in   terms  of   the growth   (or  decay)   rate  6. 

9.     Uses and Need  for   Structure. 

To  this point we have  presented  a ^ ather general model of  the man- 

power flow process and by making  special assumptions we have been able 

to  characterize constant  size,   arithmetic,   and geometric  equilibria and 

have  obtained an expression  for   the average  lifetime  in a manpower  class 

for   the  constant  size  equilibrium. 

Manpower planning models are useful  to the extent  that  they can 

show  the  impact  of  alternate  policy decisions on  indicators of   system 

,4uü,«*;iir.,w**tK;i^ 
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performance.  System performance is generally some function of the stocks 

and flows, while manpower policy is concerned with hiring, promotion, 

termination, and remuneratior.  To this point our model does not relate 

policy and performance in any meaningful way. The conservation of flow 

relations, (3), merely tell us  .n the broadest sense, what stocks and 

flows are permissible.  In fact, as example 13 below will attest, they 

admit some unrealistic possibilit"1-3.... 

To obtain results that link policy and performance it is necessary 

to make some assumptions. Our scant results to this point follow from 

the equilibrium assumption.  In the reports that follow we shall describe 

several assumptions about manpower flow processe;j and extract as much 

theoretical and operational information from these assumptions as possible. 

Example 13:  For the three class faculty example, the following equilibrium 

stocks and flows are feasible: 

f01 f02 fio fll f12 

10,000 1 10,000 0 0 

"20 

0 

f,. 23 

1 

30 

1 

33 

0 10,000 

•'2 

The reader can see, using Figure 1.2, that  f  , t    and  s, 

can be made arbitrarily large with all ocher flows and stocks fixed, and 

equations (3) will still be satisfied. 

10. Notes and Comments 

Manpower flow models have been analyzed by a number of authors 

in the 1950's and 1960,s, but mo^t results have appeared in research reports 

and papers.  Recently a number of textbooks have appeared which cover 

various aspects   manpower planning.  A list of some of these is given 

below.   The list is not intended to be a complete bibliography, but each 

text is a valuable source for further reading and references. 

.^lavai^^Mia*^^ ^^^^^.^»^s^MBiaA^^   .„ ^^*.::: ^r'^-^-'-'^J^-.'.-.^-^r 
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